

Graph Based Next Generation Energy Management System

Zhiwei Wang

GEIRI North America

August 18, 2018

GEIRI North America

GEIRI North America (GEIRINA)

- Founded in Dec. 2013 in Santa Clara, California, USA (www.geirina.net)
- Conducts cross-disciplinary R&D for power system modernization
- R&D subsidiary and overseas platform of State Grid Corporation of China
- 30+ Researchers and Engineers (50+ in summer) (still recruiting)

Research Groups & Areas

- Advanced Computing in Power System
- Power System Artificial Intelligence
- Integrated and Distributed Energy Services
- Intelligent Sensing and Chip for Energy System

Next Generation EMS Roadmap

 O5-The final goal is Robot EMS
 O2-The industry is at the stage to make EMS full functional
 O3-The critical path to meet the gap is faster than real-time EMS

全球能源互联网美国研究院

Next Generation EMS Goals:

- ✓ Provides real-time, proactive, intelligent, and predictable operation system in control center.
- Employs graph database, parallel computation, natural language processing, deep learning, and situation awareness and autonomous dispatch to drive anlaytical EMS to intelligent/robot EMS.

Faster-than-Real-Time EMS Why We Need it

- EMS in future supported by AI decision requires sophisticated model, intensive calculation, and fast computing
- ☐ High performance computing is the key to make EMS intelligence
- □ Accelerating application computing is critical for next generation EMS

Faster-than-Real-Time EMS

Why We Need it

Power Electronics Dominated Large and Complex System

Credit: Pacific Northwest National Laboratory

Credit: California Independent System Operator Corporation

Fast Change of Operation in Minutes Due to the Renewable Intermittence

When the event interval is less than the ability to respond, there is a cascading effect. This means that the region of impact from the disturbance is expanding.

Today's View > 20 seconds

Need for speed
improvement

5 seconds view

0.5 seconds view

Current EMS cycle delays responses to the cascding events driving the blackout

Sequence of Cascading Events in the 2011 Southwest Blackout in the US

Today's View > 20 seconds Needed View < 0.5 seconds

全球能源互联网美国研究网

Faster-than-Real-Time EMS Why We Need it

Pathway to Speed Improvements in Analytical Decision Making

- The analytical processing time needs to be reduced, from tens of seconds to subseconds, to move from monitoring and visualization to automatic controls.
- The need for fast and predictive analytics is amplified by physical and cyber attack on critical infrastructure.
- US DOE requires to develop State Estimation at 0.5 seconds speed for medium size system. DOE funded \$220 Millions to Faster Real-time Analytical Tools.

Faster-than-Real-Time EMS

What We Achieved

Test System: A Real Provincial System (2650 Bus)										
Commerical E	MS	Faster-than-Real-Time EMS (GEIRINA EMS Prototype)								
SCADA Sampling Rate	5 S	SCADA Sampling Rate	5 s							
EMS Execution Cycle	300 s	EMS Execution Cycle	5 s							
SE Execution Time	~4490 ms	SE Execution Time	~200 ms							
PF Execution Time	~3820 ms	PF Execution Time	~70 ms							
CA Execution Time	~18000 ms	CA Execution Time	~1000 ms							
Source: Commerical EMS Source: GEIRINA EMS Prototype										

HRT

Faster Than Real-time EMS

What We Achieved - Demo

Please note the running-time on the prototype is wall clock time incluing function calling time, execution time, and communication time.

RDB for Power System Modeling

Physical System

- □ Nodes are connected by edges
- Connectivity is naturally a graph

Relational Database

- Use table structure
 - Not support unstructured data
- Attribute relations modelled by separated tables
- Use commonly shared key values to represent data relationships

Issues of Relational Database for Power System Modeling

- □ Join intensive queries for the whole database invite large computation time
- Maintain small portion of system requires multiple table update
- □ Time consuming to support recursive queries and parallel queries

RDB based Power System Computing

Issues of Relational Database for Power System Computing

- □ Need loop through branch table and bus table to create connectivity
- Complicated to support linear equation parallel computing
- Map solved variables to bus voltages and branch flows inviting time consuming output traversal

全球能源互联网事

A Real Case of 2650 bus system

Observations:

- PF Data Input Processing and Output Traversal cost 94.5% of the total time
- SE Data Input Processing and Output Traversal cost 64.3% of the total time
- Need a new platform to integrate data management, calculation, and visualization

Graph Potentials - Parallel Computing - PF

- **Observations:**
- Matrix formation and P/Q calculation cost 45% of the total time which can be nodal parallelized.
- Matrix factorization and F/B substitution take 51% of the total time which can be hierarchical parallelized.

Graph Potentials - Parallel Computing - SE

Observations:

□ Gain matrix formulation and right-hand-side vector update take ~60% of core computation time which can be implemented by nodal parallel computing.

Gain-matrix factorization and forward/backward substitution cost ~20% of time which can be hierarchically parallelized.
13

GDB for Power System Modeling

<u>Relational Database:</u> Data model is a collection of interlinked tables. <u>Graph Database:</u> Data model is a multirelational graph.

Relational Database

- Use table structure
- Attribute relations modelled by
 - separated tables
- Need to update multiple table to maintain system
- Hard to support recursive queries and parallel queries

Physical System

- Edges are connecting by nodes
- Connectivity is naturally a graph

Graph Database

- Use graph structure with edges and nodes
- Store data by attributes of nodes and edges
- Support parallel computing
- Easy to maintain large system

GDB based Power System Computing

Advantages of Graph Computing for Power System

- Integrate system modeling, core computing, and result visualization in graph database
- Data input preprocessing and result output traversal are not need
- □ Change calculation approach from serial computing to parallel queries
- □ Implement a suite of computation queries as library for power system applications

Graph Based N-R and F-D Power Flow Algorithms

Newton-Raphson

Fast Decoupled

Graph Based State Estimation Algorithm

 $\begin{cases} G_{AA} \cdot \Delta \theta = H_{AA}^{T} R_{A}^{-1} (z_{A} - h_{A}(x)) \\ G_{RR} \cdot \Delta |V| = H_{RR}^{T} R_{R}^{-1} (z_{R} - h_{R}(x)) \end{cases}$

$$\begin{cases} G_{AA} = H_{AA}{}^{T}R_{A}^{-1}H_{AA} = \sum_{i}^{n-1} H_{AA,i}{}^{T} \cdot R_{A,i}{}^{-1} \cdot H_{AA,i} = \sum_{i=1}^{n-1} G_{AA,i} \\ G_{RR} = H_{RR}{}^{T}R_{R}^{-1}H_{RR} = \sum_{i}^{n} H_{RR,i}{}^{T} \cdot R_{R,i}{}^{-1} \cdot H_{RR,i} = \sum_{i=1}^{n} G_{RR,i} \end{cases}$$

1. Start Iterations, set iteration index k = 0;

Page-Rank Node parallel Computation

Linear Equation Solver Hierarchical Parallel Computation

- 2. Initialize the system state vector x^k , including θ^k and $|V|^k$ (flat start or not);
- 3. Formulate gain matrices, G_{AA} and G_{RR} , based on Page-Rank node parallel computing;
- 4. Decompose G_{AA} and G_{RR} using parallel LU solver;
- 5. Update right-hand-side vector $H_{AA}{}^{T}R_{A}^{-1}(z_{A} h_{A}(x^{k}))$ based on Page-Rank node parallel computing, solve $\Delta \theta^{k}$, and update $\theta^{k+1} = \theta^{k} + \Delta \theta^{k}$;
- 6. Check convergence: max $|\Delta x^k| \le \epsilon$? If yes, output θ^{k+1} and $|V|^k$; If no, go to step 7;
- 7. Update right-hand-side vector $H_{RR}{}^{T}R_{R}^{-1}(z_{R} h_{R}(x^{k}))$ based on Page-Rank node parallel computing, solve $\Delta |V|^{k}$, and update $|V|^{k+1} = |V|^{k} + \Delta |V|^{k}$;
- 8. Check convergence: max $|\Delta x^k| \le \epsilon$? If yes, output θ^{k+1} and $|V|^{k+1}$; If no, k = k + 1, go to step 5;

Graph Database

- □ No preprocessing. Connectivity is predefined in graph database.
- No output traversal. Solved bus voltage and branch flow are attributes of nodes and edges in graph database.

PF and SE Calculation Time For a Real 2650 Bus System in (s)

Relational Database

Graph Computing: A Real Case

Relational Database

- Preprocessing: Search bus tables and branch tables to find connectivities.
- Output Traversal: Map solved variables to bus voltage and branch flow.

Graph Database

2650 Bus System Model in GDB

Graph Database and Computing 18

GDB for Node-Breaker Model

Substation representation in Substation modeling in Substation representation in CIMGDB one-line diagram and CIM/E one-line diagram and CIM/E

Substation modeling in **CIMGDB**

Node – Breaker Graph Model

G

- Based on Base-value, Substation, Bus, AC line, Unit, Transformer, Load, Compensator, Converter, DC line, Island, Topo-node, Breaker and Disconnector are modeled by vertices
- Common Information Model (CIM)

Graph Topology Processing Bridge Node-Breaker to Bus-Branch Model

Graph Based Faster-Than-Real-Time EMS Platform

超实时仿真EMS系统 试态估计 · 在或潮道 · 安全并标

超实时仿真EMS系统(Faster-Than-Real-Time Simulated EMS system)

- Complete EMS applications at SCADA sampling rate (5 seconds)
- SE/PF/CA including topology processing is faster than real time, completed within 5 seconds
- Visualize application status, start time, and execution time
- □ Voltage heat map and operational serverity index show overall operational risk
- Substation diagram is automatically dynamically drawn and shows the detailed operations

Graph Based Testing Results: Newton-Raphson PF

(**ms**)

Testing System 1: 2650 Bus System

Server Config	guration	Convergence Tol	erance #	of Iteration Se	gment Size	Threads		
CPU: 2.0GHz	, Mem: 64GB	0.05		5	8	12		
Test Case	Initialization	Jacob Matrix Initialization	Order	Symbolic Factorization	Factorizatio and Iteratio	n Total n		
1	6.338	1.114	6.246	3.163	11.06	29.909		
2	5.165	1.054	6.265	2.894	10.969	27.369		
3	4.831	1.055	6.202	2.998	11.086	27.199		
4	5.75	0.964	6.152	2.862	10.975	27.01		
5	5.291	0.933	6.106	2.908	11.293	26.8		
Average	5.475	1.024	6.194	2.965	11.077	27.657		

Graph Based Testing Results: Newton-Raphson PF

(**ms**)

Testing System 2: MP10790 System

Server Configuration		Convergence Tole	rance # (of Iteration Segm	nent Size	Running Threads			
CPU: 2.0GHz	, Mem: 64GB	0.05		4	10	12			
Test Case	Initialization	Jacob Matrix Initialization	Order	Symbolic Factorization	Factorization and Iteration	on Total n			
1	22.511	4.298	27.716	19.197	54.546	146.888			
2	19.425	3.874	26.381	17.672	56.930	141.181			
3	18.555	3.864	26.574	17.401	53.265	136.331			
4	18.421	3.879	26.506	17.322	53.522	136.328			
5	18.202	3.867	26.592	17.202	52.965	135.267			
Average	19.423	3.956	26.754	17.759	54.246	139.199			

Graph Based Testing Results: Fast Decoupled PF

(**ms**)

Testing System 1: 2650 Bus System

Server Configuration			Convergence Tolerance			of Iteration	n Segme	ent Size	Threads		
CPU: 2.0GHz, Mem: 64GB				0.0	0.05			X >	12		
Test	Initia.	a. B' Matrix Factorization					trix Facto	Iteration	Total		
		Order	SymFac	t NumFact	SubTot	Order	SymFact	NumFact	SubTot		
1	7.059	2.457	1.106	0.699	4.262	2.177	1.203	0.585	3.965	6.421	25.848
2	6.256	2.427	1.114	0.635	4.176	2.109	1.262	0.57	3.941	6.441	24.898
3	6.505	2.499	1.157	0.756	4.412	2.187	1.322	0.642	4.151	6.736	25.589
4	5.976	2.406	1.107	0.647	4.187	2.116	1.207	0.603	3.926	6.469	24.461
5	5.825	2.392	1.053	0.597	4.042	2.138	1.267	0.547	3.952	6.535	24.050
Avg	6.324	2.436	1.107	0.666	4.216	2.145	1.252	0.589	3.987	6.520	24.969

Graph Based Testing Results: Fast Decoupled PF

(**ms**)

Testing System 2: MP10790 System

Server Configuration			Con	Convergence Tolerance			# of Iteration Segment Size				Running Threads		
CPU:	2.0GHz,	Mem: 64	GB	0.05			5 10				12		
Test Initia. B' Matrix Facto				ation		B" matrix Factorization				lter	Total		
		Order	SymFac	NumFac	SubTot	Order	SymFac	NumFac	SubTot	t			
1	23.446	11.417	6.665	4.482	22.564	8.962	4.807	2.475	16.244	14.144	89.266		
2	22.745	11.531	6.580	4.545	22.656	8.998	4.875	2.508	16.341	14.260	88.356		
3	22.256	11.470	6.426	4.497	22.393	8.960	4.644	2.556	16.160	14.086	87.092		
4	22.197	11.495	6.288	4.489	22.272	8.918	4.711	2.505	16.134	14.341	86.867		
5	21.916	11.292	6.308	4.485	22.085	8.953	4.584	2.529	16.066	14.335	84.903		
Avg	22.512	11.441	6.453	4.499	22.394	8.938	4.724	2.514	16.189	14.233	87.297		

Conclusions

- EMS cycle shall be speeded up as power system is significantly evolving to be larger and more complex with more power electronics, higher uncertainty, and faster events.
- Fast and predictive analytics are critical to respond the cascading events, avoid the severe blackouts, and enable the advanced system automatic control.
- High performance computing is critical to meet the gap on the pathway to EMS Robot.
- Graph database and graph parallel computing are promising to achieve Faster-than-Real-Time EMS.

Thank You! Q&A